Strain Modulation by van der Waals Coupling in Bilayer Transition Metal Dichalcogenide.
نویسندگان
چکیده
Manipulation of lattice strain is emerging as a powerful means to modify the properties of low-dimensional materials. Most approaches rely on external forces to induce strain, and the role of interlayer van der Waals (vdW) coupling in generating strain profiles in homobilayer transition metal dichalcogenide (TMDC) films is rarely considered. Here, by applying atomic-resolution electron microscopy and density functional theory calculations, we observed that a mirror twin boundary (MTB) modifies the interlayer vdW coupling in bilayer TMDC films, leading to the development of local strain for a few nanometers in the vicinity of the MTB. Interestingly, when a single MTB in one layer is "paired" with another MTB in an adjacent layer, interlayer-induced strain is reduced when the MTBs approach each other. Therefore, MTBs are not just 1D discontinuities; they can exert localized 2D strain on the adjacent lattices.
منابع مشابه
Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملLarge Proximity-Induced Spin Lifetime Anisotropy in Transition-Metal Dichalcogenide/Graphene Heterostructures
Van der Waals heterostructures have become a paradigm for designing new materials and devices in which specific functionalities can be tailored by combining the properties of the individual 2D layers. A single layer of transition-metal dichalcogenide (TMD) is an excellent complement to graphene (Gr) because the high quality of charge and spin transport in Gr is enriched with the large spin-orbi...
متن کاملStrain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure
The structural, electronic, transport and optical properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdw) heterostructure are investigated by using first principles calculations. The band gap of BP/MoS2 bilayer decreases with the applied normal compressive strain and a semiconductor-to-metal transition is observed when the applied strain is more than 0.85 Å. BP/MoS2 bilayer also exhib...
متن کاملvan der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation.
We perform a comprehensive first-principles study of the electronic properties of van der Waals (vdW) trilayers via intercalating a two-dimensional (2D) monolayer (ML = BN, MoSe2, WS2, or WSe2) between a MoS2 bilayer to form various MoS2/ML/MoS2 sandwich trilayers. We find that the BN monolayer is the most effective sheet to decouple the interlayer vdW coupling of the MoS2 bilayer, and the resu...
متن کاملUltrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers.
Two-dimensional materials, such as graphene, transition metal dichalcogenides, and phosphorene, can be used to construct van der Waals multilayer structures. This approach has shown potentials to produce new materials that combine novel properties of the participating individual layers. One key requirement for effectively harnessing emergent properties of these materials is electronic connectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2018